Lecture No. 5

Phase Space Representation.
Ensemble of Particles, Emittance.

Fernando Sannibale
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« The number of particles per bunch in most accelerators is
typically included between 10° to 1013,

 Integrating the particle motion for such a large number of
particles along accelerators with length ranging from few
meters up to tens of kilometers can prove to be a tough task.

e Fortunately, statistical mechanics gives us very developed
tools for representing and dealing with sets of large number
of particles.

e Quite often, the statistical approach can give us elegant and
powerful insights on properties that could be hard to extract
by approaching the set using single particle techniques.
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 In accelerators we are interested in studying particles along their
trajectory. A natural choice is to refer all the particles relatively to a
reference trajectory .

e Such atrajectory is assumed to be the solution of the Lorentz equation
for the particle with the nominal parameters (reference particle).

 In each point of this trajectory we can define y

(for example) a Cartesian frame moving with 2=%xy .
. X
the reference particle . /
* In this frame the reference particle is always Reference
at the origin and its momentum is always trajectory

parallel to the direction of the z axis.

 The coordinates {X, y, Z} for an arbitrary particle represent its
displacement relatively to the reference particle along the three

directions.
* In the lab frame the particle moves on the curvilinear coordinate s
with speed d</dt. 3

Fundamental Accelerator Theory, Simulations and Measurement Lab — Arizona State University, Phoenix January 16-27, 2006



Phase Space ] (1YY
«emtance P gge Space Representation Iq’fs

F. Sannibale

QA
In relativistic classical mechanics, the motion of a single
particle is totally defined when, at a given instant t, the
position r and the momentum p of the particle are given
together with the forces acting on that position.
L=xX+y y+zz pszis\(-l_pyig/-l_pziz
F=F X+F y+F,Z

It IS quite convenient to use the so-called phase space
representation, a 6-D space where the it" particle assumes the
coordinates:

P E{Xi’pxi’yi’pyi’zi’pzi}

In most accelerator physics calculations, the three planes can be
considered with very good approximation as decoupled.
In this situation, it is possible and convenient to study the particle
evolution independently in each of the planes:

{x,p} {yi’pyi} {z.p,} 4
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QrLy
The phase space can now be used for representing particles:

Puw 4 The set of possible states for a system of N particles

WExy.2 Is referred as ensemble in statistical mechanics.

, R In the statistical approach, the particles lose their
W individuality. The properties of the whole system
as individual entity are now studied.

The system is fully represented by the density of particles gy and fy :

fon (% Py Y5 p,.Z pz)dxdpxdydpydzdpz f,o(W, p,)dwdp, wW=x,Y,2

The above expressions indicate the number of particles contained in the
elementary volume of phase space for the 6D and 2D cases respectively.

j fop dxdp, dydp, dzdp, = N j f,odwdp, =N w=x,Y,z

Important properties of the density functions can now be derived.
Under particular circumstances, such properties allow to calculate the
time evolution of the particle system without going through the

Integration of the motion for each single particle. >
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A system of variables g (generalized coordinates) and p (generalized
momenta) is Hamiltonian when exists a function
H(q, p, t) that allows to describe the evolution of the system by:
dg _ oH dp _ 9H q ={0h, Upoerers Oy

dt  ap, dt  dqg P ={Py, Pyreeees Py

The function H is called Hamiltonian and g and p are referred as
canonical conjugate variables.

In the particular case that g are the usual spatial coordinates {x, y, zZ} and
p their conjugate momenta {p,, p,, p,}, H coincides with the total energy of
the system:

H =U +T = Potential Energy + Kinetic Energy

Non-Hamiltonian Forces:
eStochastic processes (collisions, quantum emission, diffusion, ...)
sInelastic processes (ionization, fusion, fission, annihilation, ...)
Dissipative forces (viscosity, friction, ...) 6
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If there is a flow of matter going inside the \
volume then the density inside the volume
must increase in order to conserve the mass.

Let the density p: N AN
Vv
o(x, y, z,t)dxdy dz = massinthevolumedV = dxdy dz /

M
dn=-pv dtdS=-pvIindSdt ==y Z—T:—pv[ﬁds ) —— _[pv[iﬁds
But it is also true that:

M:Lpdv — %jvpdv=—jspvmd8 =) jsﬁ[ms=jvm[nfdv

=) jspvmds=jvmgb\7dv =) %Lpde—jVDEb\_/dV

=) 0_10+ O0pv =0 The continuity equation is a consequence
ot of the conservation law

~
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Let us use the continuity equation with our phase space distributions.
For simplicity we will use the 2D distribution, but the same exact results
apply to the more general 6D case.

%40mpv=0  Let p=t,(xp,) and v={x p,}

" ~-
afZD +0 DfZDv — asz + 6(5( sz) + a(px sz) — asz + afZD X + asz px + f2D 6&4. fzo %
ot ot 0X ap, ot  0x ap, ap, 0X
. L 0X op 0°H
But our system is Hamiltonian fbo—+f,—=2=1f,——1f
y ) Ty PVREL ap. 2D o%ap,
of of of of df
— 2D 4 [[f.. V= —2D 4 772D ¢ 4 “72D y, = 2D
t 7 a9t ox  dp, ST
df Liouville Theorem: The phase space density for
2D — a Hamiltonian system is an invariant of the

dt motion. Or equivalently, the phase space
volume occupied by the system is conserved.

1809-1882
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* In most of existing accelerators the phase space planes are weakly
coupled. In particular, we can treat the longitudinal plane independently
from the transverse one in the large majority of the cases.

» The effects of the weak coupling can be then investigated as a
perturbation of the uncoupled case.

Phase Space Decoupling the Problem: Iqus

 In the longitudinal plane we apply our electric fields for accelerating the
particles and changing their energy.

* It becomes natural to use energy as one of the longitudinal plane
variable together with its canonical conjugate time.

 In accelerator physics, the relative energy variation oand the relative
time ‘distance’ r with respect to a reference particle are often used.:

E-E,
EO

0=

r=t-t,

e According to Liouville, in the presence of Hamiltonian forces, the area
occupied by the beam in the longitudinal phase space is conserved.

e More in Lecture 8....... 9
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E.I.J
For the transverse planes {x, p,} and {y, p;}, it is usually used a slightly
modified phase space where the momentum components are replaced by:

p, X =2 py -y =
§ ds Y ds
The physical meaning of the new variables: w
‘_)\I\BPROJECTION
x':%:taneX y':ﬂ:taney ﬁ
ds ds

W= X,
The relation between this new variables and the ’ ‘
momentum (when B,=0) is: g

dx dx ,
Py =yMy— =ymyvy— =y LBm,cX

& ds where S=- and y=(1-p52"
p, =yBmcy C

Note that x and p, are canonical conjugate variables while x and x“ are
not unless there is no acceleration (yand Sconstant) 10
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We will consider the decoupled case and use the
{w, w’} plane where wcan be either x or y.

We define as emittance the phase space area

, occupied by the system of particles, divided by 7
X

As we previously shown, x ‘and y‘are conjugate to x and ywhen B,=0

and in absence of acceleration. In this case, we can immediately apply

the Liouville theorem and state that for such a system the emittance is
an invariant of the motion.

This specific case is actually extremely important.
In fact, for most of the elements in a beam transferline, such as dipoles,
guadrupoles, sextupoles, ..., the above conditions apply and the
emittance is conserved. 11
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« When the B, component of the magnetic field is present (solenoidal

lenses for example), the transverse planes become coupled and the

phase space area occupied by the system in each of the transverse
planes is not conserved anymore.

resespce  Emittance Conservation in IS%]

« Anyway in this situation, the Liouville theorem still applies to the 4D
transverse phase space where the ipervolume occupied by our system is
still a motion invariant.

e Actually, if we rotate the spatial reference frame around the zaxis by the
Larmor frequency @ = qB,/ 2ym,, then the planes become decoupled and

the phase space area in each of the planes is conserved again.
12
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F.sambae  Tha Presence of Acceleration )

When the particles in a beam undergo to acceleration, fand ychange
and the variables x and x* are not canonical anymore. Liouville theorem
does not apply and the emittance is not conserved.

p

resespce  Emittance Conservation in IS%]

pyO

_ | T?+2Tm,c?
P, = 2 2 Pzo
» \|[ T, +2T,m,C

sz
pyO pyO '

py pyO y' :ﬂOyO

p.  Bymgc Yo By
o €
It can be shown that in thiscase f—yo = O BYE, =L Volyo
y

The last expression tells us that the quantity g y&is a system invariant
during acceleration. By defining the normalized emittance:

gnwzﬂygw W:X’y

We can say that the normalized emittance is conserved during acceleration.
The acceleration couples the longitudinal plane with the transverse one:
the 6D emittance is still conserved but the transverse is not. 13

Y, =tang, =

sz ) IBO yO n'bC
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For areal beam composed by N particles we can calculate the second
order statistical moments of their phase space distribution:

N
(x?) = nzzl o - [ % £,5(x, X )dxdlx’ (x7) = ; Xy Jx’z f,o (%, x')dxdx
N j f,o (% x')dxdx’ N I £, (x, X )dx dx

N
Z XX I xX £, (%, x')dxdx
(xx') == 0
N I f,o(x, X )dxdx’

And define the rms emittance as the quantity: (& .= \/<X2><X'2> —<X X'>2

This is equivalent to associate to the real X
beam an equivalent or phase ellipse in the (x?)

phase space with area 7€, and equation: /
<X'2> 52 _l_@xrz _2<X X'> C// <X2> X
£ £ £

rms rms rms

XX =&
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F. Sannibale and Filamentation

* In the case of a Hamiltonian system, as a consequence of the Liouville
Theorem the emittance is conserved

* This is true even when the forces acting are on the system are
nonlinear (space charge, nonlinear magnetic and/or electric fileds, ...)

* This is not true in the case of the rms emittance.
In the presence of nonlinear forces the rms emittance is not conserved

« Example: filamentation. Particles with different phase space coordinates,
because of the nonlinear forces, move with different phase space velocity

= - _
t=0 w t=t, >0 w t=t, >>t
w W-: ______________ _W

 The emittance according to Liouville is still conserved.

But the rms emittance calculated for increasing times increases.is
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X' 4 We saw that a beam with arbitrary phase space
distribution can be represented by an equivalent
ellipse with area equal to the rms emittance divided
i . by /7 and with equation:
X
*F W) () eyl

A Iwr-2 —Lfww =g, WwW=XY
£ £ £

wrms w w

A convenient representation for this ellipse, often used in accelerator
physics, is the one by the so-called Twiss Parameters &;, 4 and a; :

B W2+ W+ 2a WW =&, w=x,y |with B, ¥, a2 =1

The status of the beam at a given moment is totally defined when the
emittance and two of the Twiss parameters are known.

By comparing the two ellipse equations, we can derive:
<\NZ>:,3TW£‘W <V\/2>:yTW£W (WW)=-a.6, W=XY

Tw=w

16

Fundamental Accelerator Theory, Simulations and Measurement Lab — Arizona State University, Phoenix January 16-27, 2006



Phase Space

F. Sannibale

s«emtance Propggating the Twiss Parameters Iq’fs

QL
When the beam propagates along the beamline, the eccentricity and the
orientation of the equivalent ellipse change while the area remains
constant (Liouville theorem). In other words, the Twiss parameters
change along the line according to the action of the line elements.

<y < s X X
P =4 +q+

The single particle matrix formalism can now be extended to the Twiss
parameters. For example for a drift of length L in the horizontal plane:

() = (06 + L)) = (3) + L2(x7) + 2L (%)

(Xj: (1 Lj(xoj X=X Lx; N <X,2> _ <><62>

0 1/ X X =X , o , ,
X 0 0 oy = (% + Lo Jx6) = L (%) + (%)
Li# = Brof+ LY o2—2Lar & G (1 L2 -2LY B,
= Vil = Vid€ =) |=/0 1 0 Vro
0= Lyp - 0o a.) (0 -L 1 Jay 17
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A couple of examples: . N , , , NI
= St Ppp=1m -0,=0 ¥ ]

Propagation of beams with — e
. . E 4k = sews 10 pun enuttance| _|

different emittance through a g S
. [T -
drift space _/’/
ﬂﬂ_l} DI"' lID l?ﬁ "Il] ZI’* 3.0
 [m]

3}\_10.3? [Same l;n.a; Htlfll_?ll{'l T |j i:::::: :::::;::f:_

Propagation of beams with
different emittance through a
FODO lattice

s Beam size [m]
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Example: Acceptance of a slit

N

_—

Matched beam
emittance

Unmatched
beam emittance

/

Electron /

Trajectories \

{

>

/

Acceptance at
the slit entrance

P

AN

19
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msamibae | Accelerator Applications

The emittance is a fundamental parameter in most
accelerator applications.

e Electron microscopes: High resolution requires lower
emittances

e Free electron lasers (FEL): Intensity of the radiation
strongly depends on emittance. The smaller the better

e Synchrotron light sources: smaller emittances gives
higher brightness

e Colliders: higher emittances give higher luminosity
(in beam-beam limited regime)
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* Prove the relation g&=y'ly',, where &£ and &, are the vertical
emittance after and before acceleration by afield E,, and y’ and
Y, are the divergences after and before acceleration.

Tip: use the definition of rms emittance

e Calculate the Twiss parameter transport matrix for both planes
of a focusing quadrupole in the thin lens approximation.
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